Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion
نویسندگان
چکیده
<p style='text-indent:20px;'>The Swift-Hohenberg equation is ubiquitous in the study of bistable dynamics. In this paper, we dynamic transitions with a third-order dispersion term one spacial dimension periodic boundary condition. As control parameter crosses critical value, trivial stable equilibrium solution will lose its stability, and undergoes transition to new physical state, described by local attractor. The main result paper fully characterize type detailed structure using theory [<xref ref-type="bibr" rid="b7">7</xref>]. particular, employing techniques from center manifold theory, reduce infinite dimensional problem finite since space on which exchange stability occurs dimensional. then reduces analysis single or double Hopf bifurcations, completely classify possible phase changes depending for every period.</p>
منابع مشابه
Dynamic Bifurcation of the Periodic Swift-hohenberg Equation
In this paper we study the dynamic bifurcation of the SwiftHohenberg equation on a periodic cell Ω = [−L,L]. It is shown that the equations bifurcates from the trivial solution to an attractor Aλ when the control parameter λ crosses the critical value. In the odd periodic case, Aλ is homeomorphic to S 1 and consists of eight singular points and their connecting orbits. In the periodic case, Aλ ...
متن کاملSwift-Hohenberg equation with broken reflection symmetry.
The bistable Swift-Hohenberg equation possesses a variety of time-independent spatially localized solutions organized in the so-called snakes-and-ladders structure. This structure is a consequence of a phenomenon known as homoclinic snaking, and is in turn a consequence of spatial reversibility of the equation. We examine here the consequences of breaking spatial reversibility on the snakes-and...
متن کاملModulation Equation for Stochastic Swift-Hohenberg Equation
The purpose of this paper is to study the influence of large or unbounded domains on a stochastic PDE near a change of stability, where a band of dominant pattern is changing stability. This leads to a slow modulation of the dominant pattern. Here we consider the stochastic Swift-Hohenberg equation and derive rigorously the Ginzburg-Landau equation as a modulation equation for the amplitudes of...
متن کاملDefect formation in the Swift-Hohenberg equation.
We study numerically and analytically the dynamics of defect formation during a finite-time quench of the two-dimensional Swift-Hohenberg (SH) model of Rayleigh-Bénard convection. We find that the Kibble-Zurek picture of defect formation can be applied to describe the density of defects produced during the quench. Our study reveals the relevance of two factors: the effect of local variations of...
متن کاملGrain boundaries in the Swift-Hohenberg equation
We study the existence of grain boundaries in the Swift-Hohenberg equation. The analysis relies on a spatial dynamics formulation of the existence problem and a centre-manifold reduction. In this setting, the grain boundaries are found as heteroclinic orbits of a reduced system of ODEs in normal form. We show persistence of the leading-order approximation using transversality induced by wavenum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2021
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2021003